Elvationswnitsel. 40.0 ml Chloroform p.a. und 40.0 ml Dioxan p.a. werden mit I-5 mil orr M waissriger Natriumtetraboratlösung unter kräftigem Umschütteln gemischt. Es wird mit Kammerübersättigung gearbeitet, Raumtemperatur ca. 23°, Lauffeit 20-25 Min., Trennstrecke 100 mm . Aufgetragene Zuckermenge 5-ro γ in 2 gul Lösungsmittel.

Da die gelbe Farbe der Zuckerosazone sehr schnell verblasst, müssen die Flecken mach dem Trocknen der entwickelten Platten bei Zimmertemperatur sofort markiert werdem. Für die Resultate siehe Tabelle I und Fig. I.

Frig. II. Schematische Darstellung der getrennten Zuckerphenylosazone. $1=$ Glucose; $2=$ Fructose; $3=$ Arabimose; $4=$ Galalktose; $5=$ Laktose; $6=$ Sorbose; $7=$ Xylose; $8=$ Ribose; $9=$ Maltose.

Glucose und Fructose bzw. Arabinose und Ribose unterscheiden sich nur in den C Atomen 1 und 2 ; sie geben daher gleiche Phenylosazone.

Pharmazentisches Instītut der Universität Bonn
Melanie Rink
(Deatschtand)
Sigrid Herrmann
Eingregangen den I5. März 1963

$$
\text { J. Chromatog., } 12(1963) 415-416
$$

A simple control unit for Lovelock ionisation detectors

The use of Lovelock ionisation detectors in gas chromatography is widespread because of their constructional simplicity and high sensitivity. With the simple type ${ }^{1}$ of Lowelock detector the output consists of a standing current of about ro-8 A plus at current which is proportional to the concentration of the eluted compounds in the carrier gas as it passes through the detector and which ranges from $1 o^{-11}$ to $10^{-7} \mathrm{~A}$. In the most common type of control unit for this detector these currents are passed through a resistor of about $25 \mathrm{kM} \Omega$ and the voltage produced fed into an infinite imput and zero output resistance valve voltmeter of the type described by Scroggie ${ }^{2}$. This circuit exhibits high linearity and enables the full sensitivity of the detector to be uttilised limited only by the noise inherent in these detectors, whilst at the same time

Many applications of gas chnomatograpthr cillo mot meqquinte surcth mersiattille ammal

 between 600 and 1000 V the detector rusuallis- thas adiequatte semsintiinvithy tom most coum-

 metric recorder has been constructed in these llatbmateriies. Frug. II sthouscs the cuircuiitt

(1)

Fig. 1. Circuit diagramm of confuril unniit.

 the single stage cathode follower amplifier shown ibm tilhe lhonverr prantt off thoe difaygraum.

TABLE I
COMPONENTS VALUES FOR THE CiRCUIT SHOWN IN FIG. I

T	Transformer with secondaries giving 6.3 V at $0.3 \mathrm{~A}, 6.3 \mathrm{~V}$ at 0.3 A , $500-0-500 \mathrm{~V}$ at 5 mA	$\underset{\substack{\text { V.S. } 2}}{\mathrm{C}_{1}, \mathrm{C}_{2}}$	I $\mu \mathrm{F}$ 1500 V.W. $32 \mu \mathrm{~F} 250$ V.W.
L	20 Henry 20 mA choke	V.R.I	$50 \mathrm{k} \Omega 5 \mathrm{~W}$ W.W. potentiometer
$V 1$	EYGi	V.R. 2	$250 \Omega 5 \mathrm{~W}$ W.W. potentiometer
V 2	MEI400	B	Mallory cell type RM-3
V.S.I	G.E.C. Corona stabiliser type SCi/600, SCi/800 or $\operatorname{SCr} /$ rooo, see text.	S	Push to test switch
RI	$5 \Omega \mathrm{~W}$	R10	$280 \mathrm{k} \Omega^{1 / 2} \mathrm{~W}$
R2	$\mathrm{I} \mathrm{M} \Omega 1 / 4 \mathrm{~W}$ (see text)	RiI	10 $k \Omega^{1 / 4} \mathrm{~W}$
1 R 3	$350 \mathrm{k} \Omega 2 \mathrm{~W}$	R12	$120 \mathrm{k} \Omega 1 / 2 \mathrm{~W}$
R_{4}	$10^{9} \Omega$ Welwyn $\pm 20 \%$	R13	$3 \mathrm{M} \Omega^{1 / 4} \mathrm{~W}$
R5	$470 \mathrm{k} \Omega^{1 / 4} \mathrm{~W}$	R14	$1 \mathrm{M} \Omega^{1 / 4} \mathrm{~W}$
R6	$10^{8} \Omega$ Welwyn $\pm 20 \%$	R15	$330 \mathrm{k} \Omega^{1 / 4} \mathrm{~W}$
R_{7}	$220 \mathrm{k} \Omega^{1 / 4} \mathrm{~W}$	Rif	100 k $\Omega^{1 / 4} \mathrm{~W}$
R89	$100 \mathrm{k} \Omega^{1 / 4} \mathrm{~W}$ $470 \mathrm{k} \mathrm{l}^{1 / 4} \mathrm{~W}$	R17	$33 \mathrm{k} \Omega^{1 / 4} \mathrm{~W}$.

triode connected semi-electrometer pentode type MEI400 on the linear part of its characteristics, R6 is connected to the positive potential appearing at the junction of R5 and R6. Input voltages to the grid of V2 may change by as much as 5 V without peak doubling being shown by the detector, and a voltage of the same order as the input voltage appears at the cathode of V_{2}, in addition to its D.C. potential which is balanced against the voltage provided by V.R.I

An appropriate fraction of the signal voltage appearing at the cathode of V_{2} is selected and fed to the recorder by R's 13-17 and V.R. 2. which enable the sensitivity to set at I, 3, 10, 30 and moo times its lowest value. With potentiometric recorders requiring more than ImV for full scale deflection the value of V.R.2. must be increased and with current recorders this resistance must be omitted from the circuit.

When setting up, the voltage produced by the standing current is balanced out and the recorder set to zero by adjustment of V.R.I. Battery B and R9 provide a counter current through V.R.2. to produce a potential which fixes the position of the baseline at any desired level according to the setting of V.R.2., this baseline position being independent of the sensitivity employed. The push switch S and RII are included in the circuit to enable a mark to be produced on the record when required.

In use, the output of this unit on the most sensitive range drifts $0.1-0.05 \mathrm{mV}$ in the first quarter hour after switching on, and thereafter the drift is less than \pm o.or mV per hour, the noise level on this range being equivalent to $\pm 0.01 \mathrm{mV}$. These values are of course reduced when the less sensitive ranges are employed.

Welsh College of Advanced Technology,
B. C. Cox Cardiff (Great Britain)

[^0]Received March Ist, 1963

[^0]: ${ }^{1}$ J. E. Lovelock, in R. P. W. Scott (Editor), Gas Chromatography f96o, Butterworths, London, 1960, p. 16.
 ${ }^{2}$ M. G. Scroggie, Wireless World, 58 (1952) 14.

